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Stress disturbance due to broken fibres in metal 
matrix composites with non-uniform fibre 
spacing 

S H O J I R O  O C H I A I ,  KOZO O S A M U R A  
Department of Metallurgy, Kyoto University, Sakyo-ku, Kyoto 606, Japan 

Premature fracture of weaker fibres causes stress disturbances in composites. These disturb- 
ances are affected by non-uniformity of fibre spacing. In order to evaluate quantitatively how 
the disturbances in metal matrix composites are affected by the extent of non-uniformity of 
fibre spacing, a method of calculation is presented on the basis of two-dimensional shear lag 
analysis. Static tensile stress concentrations in the intact fibres to broken fibres, tensile stress 
distribution along the fibre axis in the broken and intact fibres and shear stresses between 
broken and intact fibres were calculated by the method presented, using some examples. It is 
shown quantitatively that the spacing between broken and intact fibres and that between 
intact and next fibres has a significant influence on tensile stress concentrations in intact fibres 
and also on the shear stresses between broken and intact fibres: the narrower the former spacing 
and the wider the latter spacing, the higher become both tensile and shear stress concen- 
trations. This tendency is enhanced when the number of broken fibres is large and when the 
strain hardening of the matrix is high. 

1. I n t roduc t ion  
The premature fracture of weaker fibres in fibre- 
reinforced composites causes stress concentrations 
along the fibre axis in the fibres adjacent to broken 
fibres, stress reduction near the broken ends in broken 
fibres and shear stress concentration between broken 
and intact fibres. These stress disturbances have been 
quantitatively analysed for elastic fibre-elastic matrix 
composites [1, 2], and for elastic fibre-metal matrix 
composites [3, 4]. In these analyses, it has been assumed 
that fibre spacing is uniform. This assumption is, how- 
ever, not necessarily practical, because most com- 
posites have, more or less, non-uniformity of fibre 
spacing. 

The aim of  the present paper is to present a method 
to calculate the static stress disturbances for elastic 
fibre-strain hardenable metal matrix composites whose 
fibre spacing is not uniform. In the following paper 
[5], employing the method of  calculation presented 
here, how the non-uniformity of fibre spacing affects 
the tensile strength of metal matrix composites will 
be studied by means of a Monte-Carlo simulation 
technique. 

In the present method of  calculation, shear lag 
analysis for a two-dimensional array of fibres [1-4] 
was modified under an approximation that only intact 
fibres are subjected to the stress concentrations result- 
ing from the broken fibres and the fibres outside the 
intact fibres undergo uniform deformation in tension 
along the fibre axis. This approximation has been 
known as a useful tool for studying nonelastic effects 
of the matrix [3]. 
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2. The m e t h o d  of  ca lcu la t ion  
2.1. Shear stress-shear strain curve of the 

matrix 
The shear stress (~m)-shear strain (7) curve of the 
matrix was approximated as shown in Fig. 1. In the 
stage of  elastic deformation (7 < *))y where  7y is the 
yield strain in shear), -c m was given by 

"C m = G m 7  (1)  

where G m is the shear modulus of the matrix, and in 
the stage of plastic shear deformation (7 > 7y), it was 
given by 

"Cm = f l G m 7  -t- (1 - -  fl)-Cy (2 )  

where Ty is the shear yield stress given by GmTy and/~ 
is the slope of shear stress-shear strain curve in plastic 
deformation, normalized with respect to Gm. "fl = 0". 
"0 < /3 < 1" and "/~ = 1" mean that the matrix 
exhibits no strain hardening after yielding in shear, it 
deforms with strain hardening coefficient flGrn, and it 
deforms elastically, respectively. 

2.2. M o d e l  s t r u c tu r e  of  the  c o m p o s i t e s  
Fig. 2 shows the two-dimensional model employed 
in the present calculation. This model is similar to 
that of Zweben [3], but it is different in that the 
strain hardening of the matrix after yield in shear 
and non-uniformity of fibre spacing are taken into 
consideration. 

The model consists of a central core of n broken 
fibres shown by "2" in Fig. 2, two intact fibres shown 
by "1" and "3", and the next two fibres shown by "0" 
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Figure 1 Schematic representation of the shear stress-shear strain 
curve of the metal matrix employed in the present calculation. 

and "4" .  The fibre spacings between "0"  and "1" ,  "1"  
and "2" ,  "2"  and "3" ,  "3"  and "4"  fibres are given by 
all, d2, d3 and d4, respectively. 

In the present  calculation,  three assumpt ions  were 
made  for  simplicity. (i) The  shear strain in the core of  
cut fibres could be neglected. This assumpt ion  makes  
the mathemat ica l  t rea tment  easy in that  the displace- 
ment  of  the fibres in the core can be given as a function 
only o f  x, the axial coord ina te  parallel to fibres where 
x is taken to be zero at the cross-section where the 
fibres "2"  are cut as shown in Fig. 2a. (ii) Only the 
intact  fibres are subjected to stress concentra t ion,  as 
stated above.  This assumpt ion  leads to the simple 
expression that  the fibres " 0 "  and "4"  undergo uni- 
fo rm de fo rmat ion  in the x direction. (iii) The  bonding  
strength between fibres and matr ix  is high enough to 
suppress debonding.  

2 .3 .  D e f o r m a t i o n  s t a 0 e s  
In the present  model ,  the following three stages arise 
with increasing stress level, as shown in Fig. 2. 

Stage I: when the stress level is low, the shear stresses 
between "1"  and "2"  (q 2) and "2"  and "3"  fibres 
(r2_3) at any x are lower than ry. 

Stage II: the q 2 and r2_3 have m a x i m a  at x = 0 and 
decrease with increasing x, as shown later. With 
increasing applied stress level, one of  the shear stresses 
of  q_2 and "/72-3 exceeds ry at  x = 0, at  which stress level 
the matr ix  between " 1 "  and "2"  fibres begins yielding 
in shear if ry = z 1 2 > "c2 3 at x = 0 or  the matr ix  
between "2"  and "3"  fibres begins yielding if Zy = 
172 3 > Zl 2. With  fur ther  increasing stress level, the 
region of  yielding of  matr ix  grows. In Fig. 2b, the case 
where the rl_2 exceeds ry for  the region o f  0 ~< x ~< b~ 
but  not  r2-3 at any x, is i l lustrated as an example.  In 
this stage, two regions exist; Region A where bo th  ~1-2 
and ~2 3 are lower than "(y and Region B where one of  
"el 2 and ~2-3 exceeds q~y at 0 ~< x ~< b I . Region A 
covers the region o f  x ~> b~ and Region B the region 
of  0 ~< x ~< b I . Taking  the case of  Fig. 2b, q-2 is 
equal to ry at x = b~. 

Stage III:  when stress levels become high, bo th  r~ 2 
and r2 3 exceed ry at least at  x = 0. Fig. 2c shows an 
il lustration of  this stage for the case of  q-2 > r2 3- In 
this stage, a new region (described as Region C) arises, 
where both  q-2 and ~'2-3 exceed ry, in addi t ion to 
Regions  A and B. Not ing  the length of  Region C a s  b 2 

and tha t  o f  Region B as b~ - b2, Regions  A, B and C 
cover  the regions o f  b~ ~< x, b2 ~ x ~ b~ and 0 ~< 
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Figure 2 Schematic representation of the model composite employed 
in the present calculation. "2" indicates n broken fibres, "1" and 
"2" the intact fibres and "0" and "4" the next fibres. (a), (b) and (c) 
correspond to Stages I, If and III, respectively. The hatched regions 
show the regions of matrix yielded in shear. 

x ~< b2, respectively. In this stage, q-2 and r2-3 are 
equal to Ty at x = b~ and b2, respectively. 

2.4. Equations for stress equilibrium 
Represent ing the displacements  o f " 0 "  to "4"  fibres by 
Uo to U4, respectively, Uo and U4 are given by ~rx /Er  

f rom the assumpt ion  (ii) above,  where ~r is the stress 
of  fibre at x = ov and Er is the Young ' s  modulus  of  
the fibre. Whether  r~_2 or z2_3 becomes ~y first depends 
on the values of  dl to d4. In the following procedure,  
we show equat ions  for the case where q-2 becomes ry 
pr ior  to r2-3. Also, equat ions for the case where r2-3 
becomes ry pr ior  to ~l 2 can be derived similarly. Fo r  
Regions A, B and C, the equil ibrium equat ions for  U~ 
to U3 are given as follows, by taking Equat ions  1 and 
2 into considerat ion.  For  Region A 

EfAr(d 2 U 1/dx 2) 

-- a m h ( g  2 - -  d l ) / d  2 -]- G m h ( g  I - rTrx /Ef ) /d  , 

(3) 

nEfAr(d 2 U 2 / d x  2) 

= Gmh(U2 - S l ) / d  2 -}- G I h ( U  2 - U3) /d  3 

(4) 

E r A r ( d  2 U3/dx 2) 

- - G m h ( U 2  - g3) /d3 + Gmh(U3 - arx /Er)d4  

(5) 



For  Region B 

t :~A~(d ~ G/dx ~) = - [ P G m ( G  - G ) /  

4 + (1 - f l ) ~ J h  + G m h ( G  - a~x/F~f)d, (6) 

nEfAr (d2U2/dx  2) = [ f l G m ( U 2 -  UI)/  

d 2 § ( I  - f i )Ty]h § G m h ( U  2 - U 3 ) / d  3 (7 )  

Er Af(  d 2 U3 / d x  2) 

= - G m h ( U 2  - U3)/d3 + G,,~h(U3 - afx/Ef)d4 

For  Region C (8) 

EfAr(d 2Ut/dx 2) = -[flGm(U2 - U1)/ 

d 2 § (1 - -  /~)Ty]h § G m h ( U  l - a f x / E f ) / d  I (9 )  

nEfAr(d  2 U2/dx  2) = [flGm(U 2 - -  U1)/d 2 

+ (1 - fi)~y]h + [ /~Grn(g2  - -  U 3 ) / d  3 § ( l  - f i) 'cy]h 

(10) 
E f A f ( d  2 U3/dx  2) 

-- [fiGm(U 2 - U3)/d 3 § (1 - fi)'cy]h 

§ Gmh(U 3 - ~rrx/Ef)/d 4 (11) 

where Af is the cross-sect ional  area  of  fibre and h the 
thickness of  the model composite.  

2.5. Non-dimensionalization 
In order  to obtain a convenient  form for the problem, 
non-dimensional izat ion was carried out  by modifying 
the method  of  Hedgepa th  who first in t roduced the 
idea o f  non-dimensional izat ion to solve this kind of  
equat ion for the model  composi te  where fibre spacing 
is un i form [1]. 

The average fibre spacing, d,v, is given by (d~ + 
d 2 § d 3 § d4)/4. Using d,v, Ef, At, Gin, h and o-r, 
non-dimensional izat ion of  U~ to U3, ry, X, b 1 and b 2 

was carried out  by letting 

U1 ( 2 , 3 ) =  af (Afdav /ErGmh) l /2u l (2 ,3 )  (12) 

7@ = af(GmAf/Efdavh)'/Z~y ( 1 3 )  

x(b , ,  b2) = (GAfd.v/Gmh)l/2~(b~,  b2) (14) 

where ul(z,3), {y and ~(/7~, I;2) are non-dimensionalized 
forms of  U~2,3~, ~y and x(b~, b2) , respectively. 

Defining 

dl  = A d a m ,  d2 = f 2 d a v ,  

d3 = fgd,~ and d4 = f4d ,  v (15) 

we can regardf~ to f4 as measures of  non-uniformity.  
In this definition,f~ + f2 + f3 + f~ is always equal to 
4. For  convenience, we again define 

a~ = 1/./'1, a2 = l/ f2,  a 3  ---- l/f3 and 

a 4 = l/f4 (16) 

Combining Equat ions  3 to 16, we have convenient  
forms of  non-dimensionalized equations for Regions A 
to C, as follows. For  Region A 

d 2 u l / d ~  2 - a2(u2 -- ul) + a~(ul -- 4) (17) 

n ( d 2 u 2 / d ~  2) = a2(u2 - ~/1) § a3 (u2  - /23) ( 1 8 )  

d 2 u 3 / d ~  2 - a 3 ( u  2 - -  U3) Jr- a 4 ( u  3 - -  ~)  ( 1 9 )  

For  Region B 

d2u,/d~ 2 = -[fiaz(u2 - ul) 

+ (1 - fl)~y] + al(u~ - ~) (20) 

n(d2uz/d~ 2) = fia2(u2 - ul) 

+ (1 - fi)~y + a3(u2 - u3) (21) 

d2u3/d~ 2 = -a3(u2  - u3) + a4(u3 - ~.) (22) 

For  Region C 
d2ul/d~. 2 - [ f i a z ( u 2 -  ul) 

+ (1 - p)~y] + < ( <  - ~) (23) 

n(d2u2/d~. 2) = [fia2(u2 - u~) + (1 - fi)~y] 

§ [ f ia3(u2 - -  /,/3) § ( l  - -  f l)~y] (24) 

d2uB/d~ 2 = -[flaB(u2 - u3) 

+ (1 - fi)~y] + a4(u3 - ~) (25) 

2.6. Solutions 
2. 6, 1. Region A 
The solutions of  Equat ions  17 and 19 for Region A are 

6 
u A = ~ + y.  A i exp (ki~) (26) 

i - I  

6 
u~ = ~ + y~ A , ( - k ~ / <  + l + ,~1/'<) 

l = l  

x exp (k,~) (27) 

6 

u9 ~ +  y 4, = Ai[nk i/a2a3 - -  [a  2 + a3 
i=1 

+ n(a 1 + a2)]k~ + (aza3 + ala2 § ala3)/a2a3] 

• exp (ki~) (28) 

where A~ to A6 are integral constants and the super- 
script A to u~ to u3 means Region A. kl to k6 are given 
as the solutions of  

(n/a2a3)k 6 - -  {[a 2 § a3 § n(al § a2 § a3 § a4)]/ 

aaa3}k 4 § {[2a2a3 § (al § a4) (a2 § a3) 

+ n(al + a2) (a  3 § a4)]/a2a3}k 2 -- [a2aB(al § a4) 

§ ala4(a 2 § a?)]/aaa 3 = 0 (29) 

2 . 6 . 2 .  R e g i o n  B 
The solutions of  Equat ions  20 to 22 for Region B and 
Equat ions  23 to 25 for Region C have different forms 
depending on the value of  ft. 

2.6.2.1. f i v  ~ O. In the case of  fi # 0, the solutions of  
Equat ions  20 to 22 are 

u B = ~ + {a3a4(a - fl)/ 

[fl(alaza3 + ala2a4 + a2a3a4) + ala3a4]}ry 

6 

+ y. B, exp (t,~) (30) 
i=1 

uB2 = ~ - {a,(a3 + a4)(1 - fi)/ 

[fi(alaza3 + ala2a4 + aza3a4) + ala3a4]}ry 

6 

+ Z B i [ - - t ~ / ( f l a 2 ) +  1 + at/( f ia2)]exp(t i~.  ) 
i=1 

(31) 

3867  



u3 B = 4 --{ala3(1 -- fl)/[fl(ala2a3 + a, a2a4 

6 

+ aza3a4) + a, a3a4]}~y + ~ B~{nt4/(fla2a3) 
i=1 

- -  [fia2 + a3 + n(al + fia2)]t~/(fla2a3) 

+ [fia2(al + a3) + ala3]/(fla2a3)} exp (ti~) 

(32) 

where BI to B 6 are integral constants  and tl to t 6 a r e  

solutions of  

(rl/fa2a3)t 6 - {[fia2 if- a3 + n(al + fla 2 if- a 3 q- a4)]/ 

f laza3}t 4 if- {[2fla2a 3 q- n(a I if- fla2) (a3 q- a4) 

if- (fla 2 q- a3)(a l  if- a4)]/fla2a3}t 2 

- {[ f (a la2a 3 + ala2a4 + a2aBa4) + a, a3a4]/ 

fla2a3} = 0 (33) 

2.6.2.2. fl = 0. In the case of  fi = 0, the solutions of  
Equat ions  20 to 22 are 

lAl~ = ~ -I- ~y/a I q- B 1 exp (--a1/24) 

+ //2 exp (a]/2~) (34) 

u2 ~ = 4 -- (l/a3 + 1/a4)ry 
6 

+ ~ B , ( - t [ / a  3 + 1 + a 4 / a 3 ) e x p  (t,4) 
i : 3  

(35) 

(36) 
6 

lAB : ~- - -  T'y/a4 "~- 2 B i  exp ( t , ~ )  
i=3 

where t3 to t6 are solutions o f  

nt4/a3 -- (n q- 1 + nag/a3)t 2 q- a 4 = 0 (37) 

2 . 6 . 3 .  R e g i o n  C 
2.6.3.1. f i r  O. In the case of  f i r  0, the solutions of  
Equat ions  23 to 25 for Region C are 

u c = ~ - {a4(a2 - a3)(1 - fl)/ 

[fl(ala2a3 + a2a3a4) + ala2a4 + ala3a4]}~y 
6 

+ ~ G exp (sd)  (38) 
i-1 

U C = ~ -- {[fl(ala 3 q- a2a4) q- 2ala4] / 

[fl(alaza3 + a2a3a4) + alaza4 + ala3a4]} 
6 

[(1 -- fi)/fl]~y + ~. C i ( - s ~ / f l a 2  + 1 + al/fla2) 
i=1 

x exp (si~) (39) 

u c = 4 + {al(a2 -- a3)(1 - fi)/ 

[fl(ala2a3 + a2a3a4) + ala2a4 + ala3a4]}ry 
6 

+ ~ C~{ns4/(fi2a2a3) - [fla2(1 + n) + na~ + fia3]s~/ 
i=1 

(f12a2a3) q- (a la  2 q- fla2a 3 q- ala3) / 

(fla2a3)} exp (s~)  (40) 

where C~ to C6 are integral constants  and sl to s6 are 
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solutions of  

[n/(fi2a2a3)]s 6 - {[fl(a2 + a3) 

+ n(al q- fia2 -F fia 3 q- a4)]/(fl2a2a3)}s 4 

q- {[2f12aza3 ~- fl(a I q- a4) (a2 q- a3) q- /'t(a I q- fa2)  

X (fla 3 + a4)]/(fi2a2a3)}s 2 -- [fl(ala2a 3 + a2a3a4 ) 

q- alaRa4 if- alaBa4]/(fia2a3) = 0 (41) 

2.6.3.2. fl = 0. In the case of  fl = 0, the solutions of  
Equat ions  23 to 25 are 

U c = ~ -'b ~y/a I q- C 1 exp ( -a1 /24)  

+ C2 exp (al/2~) (42) 

/,/2 C = ~y~2/f t  q- C 3 ~  + C 4 ( 4 3 )  

u c = ~ + ry/a4 + C5 exp (--al/24) 

+ C6 exp (@'24) (44) 

2.7, Boundary conditions 
The stress concent ra t ion  factors at ~ = 4 in " l " ,  "2"  
and "3"  fibres, Kl(~), K2(~) and K~(~), respectively, 
are given by 

K1(4) = dUl(4)/d4, K2(~) = du2(4)/d4, 

K3(~ ) : du3(~)/d4 (45) 

The positive non-dimensional  shear stresses between 
"1"  and "2"  and "2"  and "3"  fibres, z~-2 and "?_~ 3, 
respectively, in Region A are given by 

"~1-2(~) = a 2 [ u 2 ( ~ )  - -  lAl(~)] 

r2 3(~) = a3[u2(4) -- u3(~)] (46) 

In Region B, ~ 2(4) and 22 3(4) are given by 

~, 2(4) = f i adu2(4 )  - Ul(4)] + (1 - f i g  

22-3(4) = a3[u2(4) - u3(4)] (47) 

In Region C, they are given by 

~1-2(4)  = /~a2[u2(4)  - -  Ul (~) ]  q- (1 - fl)'?y 
(48) 

"~2-3(4) = fia3[u2(~) -- u3(~)] + (1 -- fi)?y 

The solutions of  ul to u3 in Regions B and C have 
different forms according to the value of  fi, as shown 
already, but  the bounda ry  condit ions are c o m m o n  for 
any value of  ft. The bounda ry  condit ions are given for 
each stage as follows. 

2 . 7 .  1. S t a g e  I w h e r e  o n l y  R e g i o n  A e x i s t s  
1. At  4 = 0, the displacements  of  fibres " l "  and 

"3"  are zero; u)(0)  = 0, uA(0) = 0, and the stress of  
fibres "2"  is zero; K2A(0) = 0. 

2. At ~ = 0% stress concentra t ion  factors for  all 
fibres are unity; K~a(oo) = 1, KA(oo) = 1, KA(oo) = 1. 

2.7.2. Stage II where Regions A(b7 <~ ~.) and 
B(O <<. ~ <~ bT) exist 

l. At ~ = 0, the displacement  of  fibres " l "  and "3"  
is zero; UIB(0) = 0, U3B(0) = 0, and the stress of  fibres 
"2"  is zero;/Q2 (0) = 0. 

2. At 4 = 51, displacements  of  fibres should be 
cont inuous;  ulA(bl) = u~(Sl), UzA(b,) = uB(bl), 



/~a(/71) = u3B(/71), the stresses of  fibres should be 
continuous;  KIA(/7~) = K~(/71), KA(/7~) = /~2(/7~), 
KA(/7~) = /x~ (/7~), and the shear stress between fibres 
"1"  and "2"  is equal to Zy; {~-2(/7~) = {y- 

3. At { = oo, stress concentra t ion factors for  all 
fibres are unity; KA(c~) = 1, KA(c~) = 1, K A(oO) = 1. 

2.7.3. Sta_ge III where Regions A (b7 <<. ~). 
B(b2 <~ ~ <<. 67) and C(O <<. ~. ~ b2) 
exist 

1. At ~ = 0, the displacement of  fibres "1"  and ' t3" 
is zero; uC(0) = 0, uC(0) = 0, and the stress o f  fibres 
"2"  is zero; K~2 (0) = 0. 

2. At { = /72, the displacements of  fibres should 
be continuous;  u~(/72) = uC(/72), u2U(/72) = u2C(/72), 
u~(/72) = uC(/72), the stresses of  fibres should be 
continuous;  /~1(/72) = K~1(/72), /d~2(/72) = /~22(/72), 
/~33 (/72) = /~33 (/72), and the shear between fibres "2"  
and "3"  is equal to ry; r2 3(/72) = ry- 

3. At ~ = /7~, as similarly as at { = /72 , the dis- 
placements and stresses o f  fibres should be continu- 
ous; u A ( / 7 1 ) =  uB(/71), / ' / f ( / 71 )=  /AB(/71), /AA(/71)= 
. B ( ~ ) ,  K IA(~ )  = K~] ( ~ ) ,  K A ( ~ )  ~- KB2(/71), K A(/TI) ~-- 
/~3 (/71), and the shear stress between fibres "1"  and 
"2"  is equal to ry; {~_2(bj) = {y. 

4. At { = oo, stress concentra t ion factors for all 
fibres are unity; KA(oo) = 1, K~'(c~) = 1, K)(oo) = 1. 

A 1 to A6, B~ to B 6, C~ to (76,/7~ and/72 are independent 
of  ~ but dependent  on the stress level at. As lily, which 
is re-defined as 6r, is given by (ar/~y) (GmAr/Erdavh) I/2 
from Equat ion  13, it can be regarded as the non- 
dimensional stress level. In the calculation, giving 
various values of  6r, we can obtain numerically the 
above values for  each 5r. Then stress concentra t ion 
factors and shear stresses between each fibre can be 
calculated using Equat ions  45 to 48. 

3. Examples of results of calculation by 
the present method 

3.1. Stress concentrat ion in intact fibres at 
x = 0 i n  Stage I 

Some examples of results of calculation of stress con- 
centration in "1"  and "3"  fibres at x = 0, K~(0) and 
/s (0), respectively, in Stage ! are shown in Fig. 3. The 
following four cases (a) to (d) were taken as examples. 

Case (a): f~ varies under  the fixed values o f f2  = 

-- 1. As f~ + f2 + f3 + f4 is equal to 4 in defi- 
nition, f4 is given by 2 - f l .  

Case (b): ~ varies under the fixed values o f f l  = 
f4 = 1. In this case,.f3 is given by 2 - f2. 

Case (c): fl  varies under  the fixed values o f f ,  = 0.5 
and .~  = 1.5. f4 is given by 2 - f l .  

Case (d): fL varies under the condit ions off1  = f4 
and.f2 = f~. f2, f3 and f4 are given by 2 - J~, 2 - fl 
andre ,  respectively. In this case the model  composi te  
shown in Fig. 2 becomes symmetric with the centre 
line of  broken fibres. Therefore,  K~(0) is equal to 

K~(0). 
The effects of  fibre spacing on KL(0) and K~(0) in 

Stage I could be summarized as follows. 
(i) The larger the non-uniformity of  fibre spacing, 

the larger the deviation of  stress concentra t ions  in the 
intact fibres f rom those for uniform fibre spacing 
( . f l  = . f2  ~-" ..14_3 = , f4  ~--- 1), as known from Cases C (a), 
(b) and (d). 

(ii) In all cases, the larger the n, the higher the K~ (0) 
and K~ (0). 

(iii) The  spacings between broken and intact fibres 
(f2 a n d r e )  have a more  predominant  effect on stress 
concentrat ions in intact fibres than those between 
intact and the next fibres (f~ and f4), as known by 
compar ing Cases (a), (b) and (d) with each other.  The  
nar rower  the former spacings, the higher the stress 
concentrat ions in intact fibres. 

(iv) When the spacings between broken and intact 
fibres are given, the wider the spacings between intact 
and the next fibres, the higher is the stress concen- 
trations in the intact fibres, as known from Cases (a) 
and (c). 

The  variation of  K~ (0) and K3(0) as a function o f  
stress level in Stages II and Ill  will be calculated in Sec- 
tion 3.3 using the conditions shown by arrows in Fig. 3. 

3.2. Shear stress concentrat ion between 
broken and intact fibres at x = 0 

With increasing stress level, the matrix,  corresponding 
to a smaller value between f2 and f3, begins yielding in 
shear at first at x = 0. After further  loading, the 
matrix, corresponding to larger value between f2 and 
.~, also yields. Some examples of  variation of  shear 
stress between '"1" and "2" fibres, r~_2 and that between 
"2"  and "3"  fibres z2 3 at x = 0 are shown as a 
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' ' ( d ]  ' ' ( b ) [  ' ' ( c )  
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'2 " 
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fl fl 

Figure 3 Varia t ions  of  ( l ,  3) K I (0) and  (2, 4) K 3 (0) in Stage I for Cases  (a), (b), (c) and  (d). (1, 2) n = 10 (3, 4) n = 3. The  condi t ions  shown 
by ar rows will be used for ca lcula t ion o f  K 1 (0) and  K3(0 ) in Stages II and  II! in Section 3.3. 
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Figure  4 V a r i a t i o n s  o f  (1, 3, 5) ~l_2(0)/ry and  (2, 4) r2_3(0)/ry as  a 
func t ion  o f  6 r u n d e r  the  c o n d i t i o n s  o f  /1 - 0.05, f~ = f4 = 1, 

/~ = 0.2, 0.5 and  1, and  n = (a) l  a n d  (b)3.  (A) a n d  ( e )  T r a n s i t i o n  
po in t s  at wh ich  Stages  I I  a n d  I I I  arise,  respect ively.  (1, 2 ) f l  = 1, 

,~ = 0.2, f ,  = 1.8, f4 = 1; (3, 4 ) J i  = f4 = 1 , f2  = 0.5, f3 = 1.5; 

(5) f , = ~ = L = A  1. 

function of stress level, 6r, in Fig. 4, where the shear 
stress is normalized with respect to ry. In Fig. 4, �9 and 
�9 refer to the transition points from Stages I to II and 
from II to III, respectively. In these examples, f2 was 
taken to be smaller than f3. Therefore ~71_2(0)/Z'y became 
unity prior to r2-3 (0)/Zy. Below the stress level, corres- 
ponding t o  ~ ' l_2(0) /~y = 1 i.e. in Stage I, both ~_2(0) 
and ~2_3(0) increase linearly with increasing stress 
level. Beyond this stress level, i.e. in Stage II, they 
increase non-linearly with increasing stress level until 
Z'2_3(0)/'Cy becomes unity and the matrix between "2" 
and "3" begins to yield. After the yielding of this 
matrix, i.e. in Stage III, they also increase non-linearly. 
In the case of f l  = f2 = f3 = f4 = 1, r1_2(0) is equal 
to r2_3 (0) due to the symmetry of the model composite, 
so that the " 1" - "2"  and "2" - "3"  matrices surround- 
ing the broken fibres yield simultaneously. Therefore 
Stage II does not exist in this case. Fig. 4 shows that 
(i) the larger the non-uniformity of the fibre, the 
larger the deviation of shear stress in the matrix from 
that for uniform spacing (curve 5) and (ii) the larger 
the n, the higher is the shear stress at the same stress 
level and therefore the earlier will the yielding of the 
matrix, begin. 

3 . 3 .  S t r e s s  c o n c e n t r a t i o n  in  i n t a c t  f i b r e s  a t  

x = 0 as  a f u n c t i o n  o f  s t r e s s  l e v e l  

The stress concentration factors in intact fibres at 
x = 0, K~ (0) and K3(0), as a function of stress level 
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Figure  5 Var i a t i ons  o f  (1, 3, 5) K 1 (0) a n d  (2, 4) K 3(0) as a f u nc t i on  
o f  6 r u n d e r  cond i t i ons  of /~  = 0.05,f2  = f3 = 1,f l  = 0.2, 0.5 and  

l, and  n = (a ) l  a n d  (b)3. (1, 2 ) f t  = 0.2, f2 = f3 = 1 , f4  = 1.8; 

(3, 4) f t  = 0.5, f2 - f~ = 1,f4 = 1.5; (5) f~ = , / 2  = f3 - f4 = 1. 

are calculated for some examples for /3 = 0.05, as 
shown in Figs 5 to 8. The conditions in Figs 5 to 8 were 
taken from those shown by arrows in Figs 3a to d, 
respectively. The effect of non-uniformity of fibres 
spacing o n  K 1 ( 0 )  and K3(0) could be summarized as 
follows. 

(i) The larger the non-uniformity of fibre spacing, 
the larger the deviation of K 1 (0) and K3 (0) from those 
for uniform spacing. 

(ii) The larger the difference between fl and f4 for 
f2 -- f3 = 1, and the larger the difference between f2 

_ , , , , (a) 

"~ 1 . 6 ~  

m 1./.,. 

u : . |  . . . .  2"- - - - "  . . . . . . . . .  - = - ' -  - : - -  
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Figure  6 Var i a t i ons  o f  (1, 3, 5) K l (0) a n d  (2, 4) K 3 (0) as  a func t ion  
o f  6 r u n d e r  c o n d i t i o n s  of /~  = 0.05,f~ = f4 = 1,f2 = 0.2, 0.5 and  
1, and  n = (a ) l  and  (b)3.  (1, 2 ) f  1 = 1,f2 = 0.2,f3 = 1.8,f4 = l; 
(3 ,4)f~ = 1,f2 = 0.5,f3 = 1.5,f~ = 1;(5)f~ = f 2  = f 3  = f 4  = 1. 
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Figure 7 Variations o f ( l ,  3, 5) KI(0 ) and (2, 4) Ks(0) as a function 
of  6 r under condit ions of  fl = 0.05,ji  = 0.2 and 1.8,f2 = 0.5 and 
./~ = 1.5, and n = (a) l and (b)Y The variations of  K~ (0) ( =  Ks(0)) 
under the condition of  uniform fibre spacing, shown by curve 5, are 
also superimposed for comparison.  (1, 2) . [ i  = 0.2, f2 = 0.5, 
./; = 1.5,./4 = 1.8; (3, 4)./i = 1.8,.1; = 0.5,/~- 1.5,A- 0.2; (5) 
.11, -.f: = A - f 4 -  1. 

and~  
/q (0) 

(iii) 
at the 

(iv) 

forf~ = f4 = 1, the larger the difference between 
and K~ (0). 
The larger the n, the higher the K~ (0) and K 3 (0) 
same stress level. 
The larger the n, Stages II and III arise at lower 

stress level. 
(v) The variation of Kl(0) remains constant in 

Stage I, but decreases in Stages II and III under the 
condition off2 ~< J;.  On the other hand, the variation 
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Figure 8 Variations of  K~(0) ( - K ~ ( 0 ) )  as a funciton of  6 r under  
condit ions ofl?  - 0.05,f~ - 0.2, 1.0 and 1.8,fl - f4 and f2 - . f s ,  

and n = (a)l and (b)3. l , f l  - 0.2, f :  - 1.8,fs = 1.8,f4 = 0.2; 2, 
f~ - 1.8,.1; - 0.2,.fs = 0.2, ./'4 = 1.8;3,.[  i - . 1 ;  = . / i  =.14 - 1. 

of K3(0) is very complex; it sometimes increases 
in Stages II and IlI but sometimes decreases with 
increasing stress level. It seems to be important to 
point out that/(3(0) can still increase after yielding of  
the matrices between "1" and "2" and between "2" 
and "Y'  fibres in Stage III, although the yielding of the 
matrix acts to reduce stress concentration in intact 
fibres when fibre spacing is uniform. Concerning the 
increment of K~(0) in Stage II and the initial region in 
Stage III, it was found from Figs 5, 6 and 7 that a 
greater increment in K3(0) occurs for larger values of 
n, for a greater difference between J; and f3 when 
./i = f4 and for a greater difference between fl and f4 
when.f2 = J3. 

(vi) Beyond the stress level where/s increases, 
both K~(0) and K~(0) decrease monotonically with 
increasing stress level, and approach unity. 

(vii) In the case of a symmetric array of fibres 
shown by curve 5 in Figs 5, 6 and 7, and shown by 
Curves 1, 2 and 3 in Fig. 8, the matrices between " l "  
and "2" fibres and that between "2" and "3" fibres 
yields simultaneously, according to which Stage II 
arises after Stage I. In this case K, (0) is equal to K3(0), 
and both K~(0) and /(3(0 ) decrease with increasing 
stress level in Stage III. 

3.4. Effects of strain hardening of matrix on 
stress concentration factors in intact 
fibres and shear stress concentration 
between broken and intact fibres at 
x = O  

An example of variations of Kl(0), K3(0), 121 2 ( 0 ) / T y  

and v2 3(0)/Ty as a function of ar for n = 3, fl  = 1, 
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Figure 9 Influence of  shear  hardening of  matrix,  /~, on (a) K~(0) 
(1 3) and K~(0) (4 6), and (b) q_2(0)/ty (1-3) and r 23(0)/ry (4-6), 
under condit ions of  f~ - 1, .~ = 0.2, [~ = 0.2, fs  = 1.8 and 
/~ = 1, and n = l. (1, 4) fl = 0.1; (2, 5) fl = 0.05; (3, 6)/? = 0. 
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Figure 10 Varia t ions  of  (a) v l 2 (~)/Zy and  (b) ~-3 (~)/~y as a funct ion  
o f ~  at the stress levels o f S f  = (1, 4) 0.3, (2, 5) 2 and  (3, 6) 4, under  
condi t ions  of/~ - 0 .05,f t  = 1,J; = 0.2,J3 = 1.8 and  f4 = 1, and  
n - (1-3) 1 and  (4-6) 3. (~k') and  ( l )  Trans i t ion  points  f rom 
Reg ions  C to B and  B to A, respectively. 

f2 = 0.2,f3 = 1.8,f4 = 1 and/3 = 0, 0.05 and 0.1 is 
shown in Fig. 9, which demonstrates the effects of the 
size of/3. Not  only the example shown in Fig. 9 but 
also other examples were calculated. From the cal- 
culation, the effects of strain hardening on stress con- 
centrations could be summarized as follows. (Bear the 
case off2 ~< f3 in mind.) 

(i) The larger /3, the more slowly decreases K 1 (0)  

with increasing 6r, and correspondingly the larger/3, 
the more rapidly increases TI_2(0)/Ty.  

(ii) Under a fixed condition of  non-uniformity of 
fibre spacing, /s for small /3 can become higher 
than that for large/3, while/s (0) for small/3 decreases 
more rapidly than that for large /3 with increasing 
stress level, as typically shown in Fig. 9. 

(iii) When/3 becomes large, ~] 2(0)/Ty becomes very 
large, especially under the condition where n is large 
and f2 is much smaller than f3. 

3.5. Stress concentration in broken and intact 
fibres and shear stress concentration 
between broken and intact fibres in the 
fibre direction 

Fig. 10 shows the shear stress distribution along the 
x-axis as a function of ~, for examples of n = 1 and 
3,/3 = 0.05,f~ = 1,f2 = 0.2,f3 = 1.8 and f4 = 1 at 
stress levels o f S f  = 0 . 3 ,  2 and 4. "A" and [] refer to the 
transition points at which Regions B and A arise, 
respectively. In the present examples, for n = 1, 
6r = 0.3, 2 and 4 correspond to Stages I, II and III, 
respectively, for n = 3, 6f = 0.3 to Stage II and 
5r = 2 and 4 to Stage III. Therefore, for n = 1, there 
is only Region A at ~f = 0.3,  there are Regions A and 
B at 6c = 2 and Regions A, B and C at 6-f = 4. For  
n = 3, there are Regions A and B at 5r = 0.3 and 
Regions A, B and C at 6f = 2 and 4. The ~1-2(~) 
decreases slowly in Regions B and C but rapidly in 
Region A with increasing ~ while the T2-3 (~) decreases 
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Figure 11 Varia t ions  of  (a) Kl(~) , (b) K2(~) and  (c) K3({) as a 
funct ion  of  { at the stress levels of  5f - (1, 4) 0�9 (2, 5) 2 and  
(3, 6) 4, unde r  condi t ions  o f  fl = 0.05, f l  - 1, f2 = 0.2, f3 = 1.8 
a n d f  4 = 1, and  n = (1-3) 1 and  (4-6) 3. 

slowly in Regions A and C but rapidly in Region B. 
The variation of stress concentration factors of K~ (~), 
K2(~) and K3(~) under conditions the same as those 
shown in Fig. 10, is shown in Fig. 11. K~(~) and 
K3(~) decrease and K2(~) increase with increasing 3, 
approaching unity at large 4. The larger the n and the 
higher the applied stress level St, the larger becomes 
the distance of disturbances of stresses from ~ = 0. 

4. C o n c l u s i o n s  
A method of calculation of stress concentration in 
intact fibres caused by broken fibres and shear stress 
concentration between broken and intact fibres in 
strain hardenable metal matrix composites in which 
the fibre spacing is not uniform has been presented. It 
was shown that the narrower the spacing between 
broken and intact fibres and the wider the spacing 
between intact and the next fibres, the higher become 
the tensile stress concentration in intact fibres and the 
shear stress concentrations between broken and intact 
fibres. When the number of broken fibres was large 
and the strain hardening of the matrix was high, this 
tendency was enhanced. 
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